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S500A
N XOR 57383, EAX
XOR 1, EAX > - 503
501 ' XOR 57382, EAX
Fig. 5A
trustedBytes = 0
untrustedBytes = 0; 5008
for cach gencrated value b:
if (b is trusted)
~— | —»  emit(b);
509 trustedBytes = trustedBytes + 1;
continue;
if (not shouldHardenUntrustedValue(b))
emit(b);
untrustedBytes = untrustedBytes + 1;
continue;
-~ & cmitHardencdValuc(b);
21 ;/ ——» untrustedBytes = decayUntrustedByte Count(untrustedByteCount);
function shouldHardenUntrusted Value(b)
if (b is a safe value)
return false;

-~ —-» proportionOfUntrustedContent = untrustedBytes / trustedBytes;
505 —|—u if (proportionOfUntrustcdContent < randomNumber() * EnviromentSafctyHeuristic)
507 return false;

return true,

Fig. 5B
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1
SELECTIVE RANDOMIZATION FOR
NON-DETERMINISTICALLY COMPILED
CODE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to, and claims the benefits of,
U.S. Provisional Patent Application No. 61/594,983, filed
Feb. 3, 2012, entitled “RUNTIME COMPILATION FOR
DYNAMIC PROGRAMMING LANGUAGES”, by Filip
Pizlo et al., U.S. Provisional Patent Application No. 61/599,
309, filed Feb. 15, 2012, entitled “RUNTIME COMPILA-
TION FOR DYNAMIC PROGRAMMING LANGUAGES?”,
by Filip Pizlo et al., both of which are hereby incorporated by
reference herein in their entirety.

FIELD OF INVENTION

The present invention relates generally to computer secu-
rity. More particularly, this invention relates to generating
non-deterministically compiled code via selective random-
ization to protect against un-trusted code execution.

BACKGROUND

Dynamic languages that lack type annotations of any kind
are increasingly popular. For example, JavaScript has become
the lingua franca of the World Wide Web, while Ruby, Python,
Perl, and PHP have become standard languages for server-
side infrastructure. However, runtime of dynamic language
based code may require significant overhead as optimal com-
pilation strategies may not be available to compile the code.

For example, JavaScript does not allow a program to
specify type of variable. Thus, during runtime, a variable may
be dynamically converted into separate types in different
execution paths. Such conversions may be computationally
expensive with high impact of overall performance. Further,
dynamically created data types may require significant
lookup or search operations among indexed data structures,
such as dictionaries, to assign a type to a data or to access
property of data of a certain type.

Furthermore, modern JavaScript engines are required to
execute un-trusted code very quickly, and for this reason use
runtime code generation through mechanisms such as Just In
Time (JIT) compilation, which may be used by an attacker to
bypass OS/hardware protection. Existing protection tech-
niques, such as constant blinding, may be adopted to block
such attacks. However, these techniques may incur perfor-
mance costs, both in terms of memory use and processor
execution time, on a target code regardless of the risk of the
target code being executed.

Therefore, traditional non-deterministic runtime compila-
tion approaches tend to be costly, inefficient and non-opti-
mized.

SUMMARY OF THE DESCRIPTION

In one embodiment, runtime compilation, such as JIT com-
pilation, may generate non-deterministic and unpredictable
code to protect against un-trusted code attacks, such as JIT
SPRAY attacks, based on heuristic rules without requiring
deterministic behavior reduction operations for all the code
generated. The heuristic rules may include estimations on, for
example, cost (e.g. runtime overhead) of code protection
incurred, amount of code protection required and/or other
applicable factors and their relationships.
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2

In one embodiment, a figure (or measurement) is dynami-
cally collected or accumulated for estimating how trustwor-
thy a state of a source code is when performing runtime
compilation of the source code. The figure may be based on
tracking an amount of emitted code (e.g. how many bytes
already generated) from the source code and an amount of
un-trusted control over the emitted code. For example, the
figure may determine (unpredictably) whether to blind (or
mangle, randomize) a constant of the source code for the
compiled code to defend against potential un-trusted execut-
able code embedded in the constant.

Other features of the present invention will be apparent
from the accompanying drawings and from the detailed
description that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and
not limitation in the figures of the accompanying drawings, in
which like references indicate similar elements and in which:

FIG. 1 is a network diagram illustrating an exemplary
runtime compilation for source code retrieved from net-
worked devices;

FIG. 2 is a block diagram illustrating one embodiment of a
system for runtime compilation of dynamic programming
languages;

FIG. 3 is a flow diagram illustrating one embodiment of a
process to selectively randomize a compiled code from a
source code in a non-deterministic manner;

FIG. 4 is a flow diagram illustrating one embodiment of a
process to emit executable code non-deterministically ran-
domized from a compiled code stream of a source code;

FIGS. 5A-5B illustrate examples of just-in-time compila-
tion with scattered randomization operations according to
certain embodiments described herein;

FIG. 6 illustrates one example of a data processing system
such as a computer system, which may be used in conjunction
with the embodiments described herein.

DETAILED DESCRIPTION

Methods and apparatuses for a runtime compiler are
described herein. In the following description, numerous spe-
cific details are set forth to provide thorough explanation of
embodiments of the present invention. It will be apparent,
however, to one skilled in the art, that embodiments of the
present invention may be practiced without these specific
details. In other instances, well-known components, struc-
tures, and techniques have not been shown in detail in order
not to obscure the understanding of this description.

Reference in the specification to “one embodiment™ or “an
embodiment” means that a particular feature, structure, or
characteristic described in connection with the embodiment
can be included in at least one embodiment of the invention.
The appearances of the phrase “in one embodiment” in vari-
ous places in the specification do not necessarily all refer to
the same embodiment.

The processes depicted in the figures that follow, are per-
formed by processing logic that comprises hardware (e.g.,
circuitry, dedicated logic, etc.), software (such as is runon a
general-purpose computer system or a dedicated machine), or
a combination of both. Although the processes are described
below in terms of some sequential operations, it should be
appreciated that some of the operations described may be
performed in different order. Moreover, some operations may
be performed in parallel rather than sequentially.
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FIG. 1 is a network diagram illustrating an exemplary
runtime compilation for source code retrieved from net-
worked devices. In one embodiment, network system 100
may include one or more server application 101, such as web
server, hosted in one or more server devices to provide con-
tent available for client application 105, such as web browser,
running in a client device. Server 101 and client 105 may
communicate with each other via network 103 based on, for
example, internet protocols such as HTTP (Hypertext Trans-
port Protocol) or other applicable protocols.

In one embodiment, content retrieved from server 101 may
include web pages based on hypertext languages, such as
HTML (Hypertext Markup Language) or other markup lan-
guage, embedded or linked (e.g. hyperlinked) with sources in
a dynamic programming language, such as ECMAScript
(Standard ECMA-262, ECMAScript Language Specifica-
tion, Edition 5.1, June 2011). JavaScript may represent one
implementation of ECMAScript language. Client 105 may
dynamically download or fetch the linked sources for execu-
tion. In one embodiment, client 105 may dynamically com-
pile the downloaded sources during runtime to improve
execution performance.

FIG. 2 is a block diagram illustrating one embodiment of a
system for runtime compilation of dynamic programming
languages. In one embodiment, system 200 may include
operating environment 201, such as an operating system host-
ing client application 101 of FIG. 1. Operating environment
201 may include runtime compiler 221 dynamically compil-
ing source code 203 into executable code 213. Source code
203 may comprise programs in a dynamic programming lan-
guage, such as ECMAScript. In one embodiment, source
code 203 may be retrieved from a remote device, such as
server 101 of FIG. 1, by a browser application running in
operating environment 201. Both runtime compiler 221 and
execution runtime 215 may be controlled by the browser
application to perform browsing operations.

In one embodiment, runtime compiler 221 may include
non-optimized code generator module 207 to compile source
code 203. Module 207 may include source profiling module
209 to generate profiling information (e.g. code location iden-
tifiers, token keys, or other statically analyzed code data etc.)
from source code 203. According to some embodiments,
module 207 may provide an initial version of executable code
213 which is to be dynamically updated and optimized during
runtime via optimized compilation module 211.

For example, execution runtime 215 may execute execut-
able code 213 to collect tracer graph 219 which provides
runtime statistics for optimized compilation module 211 to
perform optimization operations (e.g. data type conversions,
code replacements, etc.) on executable code 213. Execution
runtime 215 can dynamically maintain runtime state 217
including, for example, data instances (e.g. objects or other
data structures) created for executing source code 203. Runt-
ime compiler 221 may include non-deterministic code ran-
domization module 205 to introduce unpredictability
between source code 203 and executable code 213 to protect
against executing potential hidden executable code embed-
ded inside source code 203.

Runtime compiler 221 may include non-deterministic
code randomization module 205 to introduce unpredictability
between source code 203 and executable code 213 to protect
against executing potential hidden executable code embed-
ded inside source code 203.

Selective Randomization for Non-Deterministically Com-
piled Code

Runtime compiler (such as JIT compiler) may selectively
and randomly introduce nondeterministic elements to gener-

10

15

20

25

30

40

45

55

60

65

4

ate an unpredictable compiled code for a source code (e.g. a
ECMAScript code remotely fetched) to protect against poten-
tial execution of un-trusted code embedded inside the source
code. Separate compilations on a common source code by the
runtime compiler may result in different unpredictable com-
piled codes without predictability between each other. The
runtime compiler may be configured to vary degrees of pro-
tection (or randomness) desired and amount of overhead
incurred in the unpredictable compiled code. For example,
nondeterministic elements may be selectively applied ran-
domly at different portions of a compiled code based on
non-deterministic decisions. Thus, possible deterministic
behavior of a code generator in the runtime compiler may be
reduced.

In one embodiment, a runtime compiler may heuristically
morph machine instructions of a regular compiled code in a
random manner (e.g. a random spray manner) to generate an
unpredictable compiled code. Heuristic evaluations may be
dynamically applied to non-deterministically decide whether
to introduce unpredictability at different portions of the regu-
lar compiled code of a source code. In one embodiment,
heuristic evaluations may assign an amount of trustworthi-
ness to a block of code based on static or dynamic measures
or analysis of the source code as it is being compiled.

For example, each unit of code (e.g. a value, a constant etc.)
compiled from a source code may be designated as either
trusted or un-trusted. Total sizes of trusted code (e.g. number
of'bytes or machine instructions) and un-trusted code may be
dynamically maintained to provide a heuristic measure of a
ratio between trusted code and un-trusted code encountered at
some point in time during compilation. Optionally or addi-
tionally, heuristic measures may include number of function
block codes (or functions) which have already been emitted
(e.g. generated as part of unpredictable compiled code), size
of'a function block code, or other applicable measures. Typi-
cally, the larger in size a function block code is, the less likely
the function block code can be trusted. Similarly, the more
functions a source code includes, the less trust it may be
ascribed to.

In one embodiment, heuristic measures of trustworthiness
for a code (e.g. a block of compiled code) may be combined
to determine whether to perform randomization operations on
the code as part of unpredictable compiled code. The deter-
mination may be based on outcome of a random function. The
behavior of the random function may result in less likelihood
to perform the randomization operations in proportion to
amount of trust estimated based on the heuristic measures.
The random function may provide non-deterministic proper-
ties or unpredictability in an unpredictable compiled code.
For example, the portions of the regular compiled code to be
randomized may be unpredictable according to the random
function.

Insome embodiments, a proportion of un-trusted bytes that
have been emitted in a given instruction stream may be
tracked during JIT compilation. The proportion may be used
as a weighting factor to decide whether to apply randomiza-
tion operations to protect the generated code. This decision
may be made on the basis of a set of heuristics that may be
varied per-environment depending on the degree to which the
environment is susceptible to these attacks, and the output of
arandom process. Any deterministic factor in selecting which
portions of the code to apply randomization operations (or
hardening points) may be prevented.

Exemplary randomization operations may include NOP
(no op) padding operations, randomized instruction selec-
tions, constant blinding operations, other applicable code
randomization operations or combinations of code random-
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ization operations and normal operations. NOP padding
operations may be performed (e.g. via a code generator of a
runtime compiler) to randomly generate instructions that
have no effect on execution other than to change the spacing
between instructions. For example, one or more machine
instructions that have no effect may be planted into the
instruction stream so that the distance (e.g. of instruction
positions within the executable code) between attacker con-
trolled constants is unpredictable.

Randomized instruction selection operations can make use
of'the fact that many instructions may be encoded differently,
or be substituted with other instructions that have the same
result (e.g. subtracting a positive constant vs adding a nega-
tive constant). Constant blinding operations may be per-
formed to replace a constant (e.g. used by a attacker) with
another constant that was generated by a reversible operation,
followed by code to reverse the transformation. For example,
operation a=b+5 may be converted to a=b+3+2, or a=b++7-2
ora=b—-5 ora=b+(8"13) ora=b+(20>>2) or a=(b*10-50)/10
etc.

Alternatively or additionally, randomized instruction
selections may include instruction re-ordering. In some plat-
forms, multiple instructions may be required to load a large
constant. For example, registerO=0xffftffff may be imple-
mented as

mov register0, Ox{fff // to set register0 to Oxffff
orhi register0, Oxffff // to logically load Oxffff into the top half of
// register0, such that register0 contains the value
// Ox T

There can be numerous ways or mechanisms to perform
randomization operations to introduce non-determinism into
code generator. These mechanisms may be dynamically
selected during run time in a non-deterministic manner.

Selective randomization in a runtime compiler may effec-
tively block attacker’s attempt to execute an un-trusted code
embedded inside a source code (e.g. a JIT Spray attack) while
atthe same time limit resource overhead incurred (e.g. in code
size, total runtime and/or memory space required). Although
selective randomization may apply randomization operations
(e.g. constant blinding operations) to a certain subset of code
(e.g. certain constants instead of all constants of the code), the
randomness and unpredictability introduced in the emitted
compiled code can prevent practical attacks, such as JIT
Spray attacks or other attacks. For example, the code genera-
tor may not be forced to produce instructions to be interpreted
by a processor as the attacker expects.

FIG. 3 is a flow diagram illustrating one embodiment of a
process to selectively randomize a compiled code from a
source code in a non-deterministic manner. Exemplary pro-
cess 300 may be performed by a processing logic that may
include hardware, software or a combination of both. For
example, process 300 may be performed by some compo-
nents of system 200 of FIG. 2. At block 301, the processing
logic of process 300 may dynamically determine heuristic
indicators indicating likelihood of trustworthiness of a source
code for generating compiled code for the source code. A
heuristic indicator may indicate whether a portion of a code
(e.g. a value created in the code) is trusted or not, amount of
trusted code, amount of un-trusted code, relative size between
trust and un-trusted code, total size of a function block of
code, heuristic environmental settings, or other applicable
heuristic estimation.

At block 303, the processing logic of process 300 may
non-deterministically select portions of a compiled code
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according to heuristic indicators. The processing logic of
process 300 may randomize the selected portions of the com-
piled code to introduce unpredictability to the randomized
compiled code without incurring execution cost in unselected
portions of the compiled code which are not randomized. The
randomized compiled code for a source code may not be
predicted from a separate compiled code of the source code.
At block 305, the processing logic of process 300 may
execute the randomized compile code compiled from a source
code without executing potential un-trusted code embedded
inside the source code.

FIG. 4 is a flow diagram illustrating one embodiment of a
process to emit executable code non-deterministically ran-
domized from a compiled code stream of a source code.
Exemplary process 400 may be performed by a processing
logic that may include hardware, software or a combination
of’both. For example, process 400 may be performed by some
components of system 200 of FIG. 2. At block 401, in one
embodiment, the processing logic of process 400 may
dynamically track a proportion of un-trusted code vs. trusted
code in an already emitted code stream (e.g. to emit a next
code to the code stream) for generating executable code. The
processing logic of process 400 may compile a source code
(e.g. a ECMAScript code) to the executable code during
runtime.

At block 403, the processing logic of process 400 may
determine if a next code ready for emission is a trusted or not.
For example, the next code may be a code block (e.g. an
instruction) next to an already emitted code stream in a com-
piled code. The next code may not be trusted, for example,
with a value or constant created or specified from a source
code which is not trusted (received or retrieved from an
unverified source). Alternatively a value created or controlled
by a compiler, such as a built in constant for a programming
language, may be trusted.

If the next code is not trusted at block 405, the processing
logic of process 400 may randomly determine whether to
morph the next code, for example, based on a proportion of
un-trusted code vs. trusted code dynamically tracked. The
processing logic of process 400 may selectively perform ran-
domization operations to randomize or morph the next code
to allow non-deterministic adjustment of amount of random-
ization in an emitted code stream for improving execution
performance of a randomized compiled code. For example,
the higher the proportion of un-trusted code, the more likely
the next code may be randomized.

At block 407, if a next code is selected for randomization,
the processing logic of process 400 may perform one or more
randomization operations on the next code to hide potential
un-trusted executable instructions embedded in the next code.
A randomization operation may be a constant blinding opera-
tion, NOP padding operation, instruction randomizing opera-
tions, or other suitable operations for the next code. The
processing logic of process 400 may emit the randomized
code to a code stream for execution at block 409.

FIGS. 5A-5B illustrate examples of just-in-time compila-
tion with scattered randomization operations according to
certain embodiments described herein. Turning now to FIG.
5A, code block (or instruction) 501 may include un-trusted
constant value 1. A randomization operation, such as constant
blinding operation may be selectively applied to randomize or
morph code block 501 into code block 503 using an arbitrary
number 57382 to perform the same function as block 501.
Potential hidden executable instructions embedded via un-
trusted value 1 in code block 501 may be prevented from
being executed in code block 503.
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Example 500B describes exemplary operations to selec-
tively randomize compiled code to introduce predictability in
a cost effective manner. At 505, a heuristic measure is calcu-
lated for a proportion of un-trusted content vs. trusted content
based on a total number (or bytes) of un-trusted values and a
total number of trusted values currently encountered in a
compiled code stream. At 507, a random selection is per-
formed to determine whether to apply random operations to
randomize a code (or harden a value) to be emitted. In one
embodiment, as the proportion of un-trusted content becomes
higher, the likelihood of randomizing the code may increase.
By involving a random number at 507, the selection opera-
tion, and thus, the emitted compiled code, may become non-
deterministic or unpredictable.

In some embodiments, a proportion of un-trusted code may
be estimated to indicate a ratio of un-trusted code size and a
total size of the code (both trusted and un-trusted) currently
encountered. Function randomNumber at 507 may return a
random value between 0 and 1. In one embodiment, if the
ratio indicated and the random value returned satisty a certain
relationship (e.g. the ratio indicated being greater than the
random value returned adjusted by a configurable setting), the
current un-trusted code may be hardened (or randomized).
Thus, the higher the proportion of un-trusted code, the more
likely the current un-trusted code may be hardened for emis-
sion.

In one embodiment, function emit (e.g. at 509) may pass a
byte through to an instruction stream without modification.
Function emitHardenedValue at 511 may perform one or
more randomization operations to harden the value being
emitted. The randomization operations applied may not be
predictable by an attacker. Function decayUntrustedByte-
Count at 513 may apply a decay factor to adjust (e.g. dynami-
cally reduce) the total number of un-trusted values encoun-
tered (e.g. untrustedBytes).

Example 500B may include configurable parameters or
functions based on heuristically determined environmental
settings (e.g. based on where a source code is received from,
which version of hosting operating system, user inputs or
other applicable settings) to adjust, for example, attacker
protection effectiveness vs code execution efficiency. For
example, decay factor at 513 may be applied to prevent penal-
izing all large pieces of code, as potential hidden un-trusted
code planted by an attacker may have already been broken
after emitting a harden value. Without applying the decay
factor (e.g. decayUntrustedByteCount), operations in
example 500B may eventually enter a state where almost all
values of the compiled code are hardened. Similarly, rapid
decay of the total number of un-trusted values may result in
sufficiently large streams of unhardened values for an attacker
to mount a successful attack. Thus, decayUntrustedByte-
Count at line 513 may apply a decay factor that has been
determined appropriate for the target environment, e.g. via
EnviornmentSafetyHeuristic at 507 for the environmental
settings.

In some embodiments, environmental settings can affect
non-deterministic decision (or selection) as to whether to
harden an un-trusted code for emission. For example, random
value returned by randomNumber may be updated by Envior-
nmentSafetyHeuristic 507 to change the likelihood that a
proportion of un-trusted code and the random value can sat-
isfy a relationship to randomize current un-trusted code for
emission. If the environment is safe (e.g. a secure host, or a
verified source code etc.), the environmental settings may
cause a decrease, for example, in the likelihood that the rela-
tionship would be satisfied and vice versa.
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FIG. 6 shows one example of a data processing system,
such as a computer system, which may be used with one
embodiment the present invention. For example, system 2 of
FIG. 2 may be implemented as a part of the system shown in
FIG. 6. Note that while FIG. 6 illustrates various components
of a computer system, it is not intended to represent any
particular architecture or manner of interconnecting the com-
ponents as such details are not germane to the present inven-
tion. It will also be appreciated that network computers and
other data processing systems which have fewer components
or perhaps more components may also be used with the
present invention.

As shown in FIG. 6, the computer system 600, which is a
form of a data processing system, includes a bus 603 which is
coupled to a microprocessor(s) 605 and a ROM (Read Only
Memory) 607 and volatile RAM 609 and a non-volatile
memory 611. The microprocessor 605 may retrieve the
instructions from the memories 607, 609, 611 and execute the
instructions to perform operations described above. The bus
603 interconnects these various components together and
also interconnects these components 605, 607, 609, and 611
to a display controller and display device 613 and to periph-
eral devices such as input/output (I/O) devices which may be
mice, keyboards, modems, network interfaces, printers and
other devices which are well known in the art. Typically, the
input/output devices 615 are coupled to the system through
input/output controllers 617. The volatile RAM (Random
Access Memory) 609 is typically implemented as dynamic
RAM (DRAM) which requires power continually in order to
refresh or maintain the data in the memory.

The mass storage 611 is typically a magnetic hard drive or
amagnetic optical drive or an optical drive ora DVD RAM or
a flash memory or other types of memory systems which
maintain data (e.g. large amounts of data) even after power is
removed from the system. Typically, the mass storage 611
will also be a random access memory although this is not
required. While FIG. 6 shows that the mass storage 611 is a
local device coupled directly to the rest of the components in
the data processing system, it will be appreciated that the
present invention may utilize a non-volatile memory which is
remote from the system, such as a network storage device
which is coupled to the data processing system through a
network interface such as a modem or Ethernet interface or
wireless networking interface. The bus 603 may include one
or more buses connected to each other through various
bridges, controllers and/or adapters as is well known in the
art.

Portions of what was described above may be implemented
with logic circuitry such as a dedicated logic circuit or with a
microcontroller or other form of processing core that executes
program code instructions. Thus processes taught by the dis-
cussion above may be performed with program code such as
machine-executable instructions that cause a machine that
executes these instructions to perform certain functions. In
this context, a “machine” may be a machine that converts
intermediate form (or “abstract™) instructions into processor
specific instructions (e.g., an abstract execution environment
such as a “virtual machine” (e.g., a Java Virtual Machine), an
interpreter, a Common Language Runtime, a high-level lan-
guage virtual machine, etc.), and/or, electronic circuitry dis-
posed on a semiconductor chip (e.g., “logic circuitry” imple-
mented with transistors) designed to execute instructions
such as a general-purpose processor and/or a special-purpose
processor. Processes taught by the discussion above may also
be performed by (in the alternative to a machine or in com-
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bination with a machine) electronic circuitry designed to
perform the processes (or a portion thereof) without the
execution of program code.

An article of manufacture may be used to store program
code. An article of manufacture that stores program code may
be embodied as, but is not limited to, one or more memories
(e.g., one or more flash memories, random access memories
(static, dynamic or other)), optical disks, CD-ROMs, DVD
ROMs, EPROMs, EEPROMs, magnetic or optical cards or
other type of machine-readable media suitable for storing
electronic instructions. Program code may also be down-
loaded from a remote computer (e.g., a server) to a requesting
computer (e.g., aclient) by way of data signals embodied in a
propagation medium (e.g., via a communication link (e.g., a
network connection)).

The preceding detailed descriptions are presented in terms
of algorithms and symbolic representations of operations on
data bits within a computer memory. These algorithmic
descriptions and representations are the tools used by those
skilled in the data processing arts to most effectively convey
the substance of their work to others skilled in the art. An
algorithm is here, and generally, conceived to be a self-con-
sistent sequence of operations leading to a desired result. The
operations are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be kept in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing” or “computing” or “calculating” or “deter-
mining” or “displaying” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system’s registers and memories into other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

The present invention also relates to an apparatus for per-
forming the operations described herein. This apparatus may
be specially constructed for the required purpose, or it may
comprise a general-purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer read-
able storage medium, such as, but is not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs),
RAMs, EPROMs, EEPROMs, magnetic or optical cards, or
any type of media suitable for storing electronic instructions,
and each coupled to a computer system bus.

The processes and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general-purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct a more specialized apparatus to per-
form the operations described. The required structure for a
variety of these systems will be evident from the description
below. In addition, the present invention is not described with
reference to any particular programming language. It will be
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appreciated that a variety of programming languages may be
used to implement the teachings of the invention as described
herein.
The foregoing discussion merely describes some exem-
plary embodiments of the present invention. One skilled in
the art will readily recognize from such discussion, the
accompanying drawings and the claims that various modifi-
cations can be made without departing from the spirit and
scope of the invention.
What is claimed is:
1. A machine-readable non-transitory storage medium
having instructions therein, which when executed by a
machine, cause the machine to perform a method, the method
comprising:
providing a source code specifying operations in a pro-
gramming language, wherein machine instructions are
executable to perform the operations specified in the
source code, the source code to be compiled into a com-
piled code, wherein a portion of the compiled code has
been generated from the machines instructions, wherein
a next portion of the compiled code is to be generated
from a code block of the machine instructions;

dynamically determining indicators indicating likelihood
of trustworthiness of the code block;
randomly determining whether to select the code block for
randomization according to the indicators;

randomizing, if the code block is selected for randomiza-
tion, the code block to generate a randomized compiled
code for the next portion of the compiled code, wherein
the code block is randomized before completion of the
compilation of the source code; and

executing the compiled code to perform the operations.

2. The medium of claim 1, wherein the compiled code
includes a plurality of code units and wherein the determining
comprises:

designating each code unit as either trusted or un-trusted

when the source code is being compiled.

3. The medium of claim 2, further comprising:

maintaining amount of trusted code and amount of un-

trusted code separately indicating total size of trusted
code units and total size of un-trusted code units that
have been compiled from the source code, wherein the
indicators include the trusted code size and the
un-trusted code size.

4. The medium of claim 3, wherein the indicators include a
ratio between the amount of trusted code and the amount of
un-trusted code.

5. The medium of claim 3, wherein the amount of un-
trusted code is related to the total size of un-trusted code units
via a decay factor, and wherein the decay factor is dynami-
cally applied to reduce the total size of un-trusted code units
for the amount of un-trusted code during compilation of the
source code.

6. The medium of claim 1, wherein one of the indicators
represents a proportion of un-trusted content encountered in
the source code during the compilation of the source code, the
determining comprises:

comparing the one indicator with a dynamic random value

during the compilation, wherein the one indicator is no
less than the dynamic random value if the code block is
selected for randomization.

7. The medium of claim 6, wherein the dynamic random
value is non-predictably generated via a function of an envi-
ronmental setting representing a level of safety for the source
code, and wherein the higher the level of safety, the less likely
the one indicator is no less than the dynamic random value
when compared.
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8. The medium of claim 7, wherein the setting is heuristi-
cally configured based on location of the source code.

9. The medium of claim 1, further comprising:

applying randomization operations to randomize the

machine instructions, wherein the randomization opera-
tions introduce unpredictable instructions in the ran-
domized compiled code.

10. The medium of claim 9, wherein the randomization
operations include constant blinding operations.

11. A machine-readable non-transitory storage medium
having instructions therein, which when executed by a
machine, cause the machine to perform a method, the method
comprising:

providing a source code specifying operations in a pro-

gramming language, wherein machine instructions are
executable to perform the operations specified in the
source code; and

emitting a code stream as compiled code for compiling the

source code based on the machine instructions, wherein

a portion of the compiled code has been emitted,

wherein a next portion of the compiled code is to be

emitted from a next code ofthe machine instructions, the

code stream having an amount of randomization to pro-

tect against execution of potential un-trusted executable

instructions embedded via the source code, wherein the

emitting the code stream comprises:

determining if the next code from the machine instruc-
tions is trusted or not,

if the next code is not trusted, randomly determining
whether to select the next code for randomization to
allow adjustment of the amount of randomization in
the code stream,

if the next code is selected for randomization, perform-
ing randomization operations on the next code to
introduce additional randomness to the code stream,
wherein the randomization operations are performed
on the next code before completion of the compilation
of the source code, and

emitting the randomized next code to the code stream for
execution.

12. The medium of claim 11, wherein the next code repre-
sents a value specified in the source code and wherein the next
code is un-trusted if the source code is received from an
unverified source.

13. The medium of claim 11, wherein the source code is
compiled via a compiler and wherein the next code is trusted
if the next code represents a value created by the compiler.

14. The medium of claim 13, wherein the source code is
retrieved from a remote device and wherein the compiler is a
just in time compiler to generate the code stream during
runtime.

15. The medium of claim 11, wherein the selection is based
on heuristic indicators including a proportion of amount of
un-trusted code vs amount of trusted code in an already emit-
ted portion of the code stream, and wherein the proportion is
dynamically tracked during emission of the code stream.

16. The medium of claim 15, wherein the heuristic indica-
tors are associated with environmental settings to allow
adjustment between effectiveness of the protection and effi-
ciency of execution of the code stream.

17. The medium of claim 16, wherein the environmental
settings specify a degree of susceptibility to security attacks
to execute the code stream.

18. The medium of claim 16, wherein the heuristic indica-
tors include a decay factor configured according to the envi-
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ronmental settings, and wherein the amount of un-trusted
code represents number of bytes in the un-trusted code
dynamically adjusted by the decay factor to prevent penaliz-
ing code sized with a large number of bytes.

19. The medium of claim 16, wherein the heuristic indica-
tors include a dynamically generated random value, and
wherein the next code is selected if the proportion and the
dynamically generated random value satisfy a particular rela-
tionship.

20. The medium of claim 19, wherein the dynamically
generated random value is associated with the environmental
settings to adjust likelihood of the selection of the next code
for randomization.

21. The medium of claim 11, wherein the randomization
operations include constant blinding operations.

22. A computer implemented method comprising:

providing a source code specifying operations in a pro-
gramming language, wherein machine instructions are
executable to perform the operations specified in the
source code, the source code to be compiled into an
compiled code, wherein a portion of the compiled code
has been generated from the machines instructions,
wherein a next portion of the compiled code is to be
generated from a code block of the machine instructions;

dynamically determining indicators indicating likelihood
of trustworthiness of the code block;

randomly determining whether the code block is selected
for randomization according to the indicators;

randomizing, if the code block is selected for randomiza-
tion, the code block to generate a randomized compiled
code for the next portion of the compiled code, wherein
the code block is randomized before completion of the
source code; and

executing the compiled code to perform the operations.
23. A computer system comprising:

a memory storing executable instructions;

an interface to dynamically fetch a source code; and

a processor coupled to the memory and the interface to
execute the instructions, the processor being configured
to:

provide a source code specifying operations in a pro-
gramming language, wherein machine instructions
are executable to perform the operations specified in
the source code, the source code to be compiled into a
compiled code, wherein a portion of compiled code
has been generated from the machines instructions,
wherein a next portion of the compiled code is to be
generated from a code block of the machine instruc-
tions,

dynamically determine indicators indicating likelihood
of trustworthiness of the code block,

randomly determine whether to select the code block for
randomization according to the indicators,

randomize, if the code block is selected for randomiza-
tion, the code block to generate a randomized com-
piled code for the next portion of the compiled code,
wherein the code block is randomized before comple-
tion of the compilation of the source code, and

execute the compiled code to perform the operations.
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